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Table 8. Intermolecular contacts (less than 3.6/~)  

Atoms Distance Atoms Distance 

Q-O2 (I) 3.343 G-H (III) 3.557 
O1-E (II) 3.444 I-J (III) 3.556 

C-B (III) 3-554 K-L (III) 3-520 
E - F  (III) 3-511 P-N (III) 3.514 
F-O2 (III) 3.574 R-Q (III) 3-559 

(I) refers to the molecule at ½Tx, --y, --z; 
(II) ½+x, ½--y, --½+z; 

(III) x,y, l+z.  

The mean  value for the  four single bonds in ring I I  
is 1.491 /~ bu t  while pairs of bonds which are on 
opposite sides of the  ring [GH and  AS; H I  and AB] 
have almost  identical lengths, the  adjacent  bonds 
[GH and  HI;  A S  and AB] have different values. 
The difference (0.016 A) f rom the mean  is, however,  
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Fig. 6. Bond lengths (A) and bond angles. 

not  significant. There is a significant lengthening of 
the aromat ic  bond I J  (1.472 /~) due to steric inter- 
ference between 02  and  the  hydrogen a t t ached  to 
a tom K. The three aromat ic  rings have  the  following 
mean bond lengths, I (1.394), I I I  (1.405), IV  (1.413). 

The short  length of the  c axis means t h a t  molecules 
a t  each end of this axis are a l ready  fair ly close and  
the inclination of the  molecular plane brings certain 
a toms in neighbouring molecules even closer. There 
are some other  short  intermolecular  distances between 
the molecules re lated by  the  screw axis. Those inter- 
molecular contacts  (not including hydrogen atoms) 
which are less t h a n  3"6 /~ are listed in Table 8. 
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I. General  Formulat ion  and Trea tment  for Perfect Crystals  
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A dynamical diffraction theory for distorted crystals is formulated for the Laue ease based on a 
'lamellar crystal' method originally given by C. G. Darwin (Phil. Mag. 1914, 27, 325 and 675). 
In  each lamellar crystal a Born approximation is assumed. Relations among two-dimensional 
Fourier transforms of wave functions on the successive boundaries between lamellae are obtained 
in terms of generalized matrix multiplication. In the two-beam case of a perfect crystal, results 
coincide with those of the ordinary Laue-Bethe theory. 

The theory is applicable to asymmetrical cases with a large Bragg angle; namely to the general 
cases of X-rays and neutrons as well as electrons. 

1. I n t r o d u c t i o n  t ion (Laue, 1931; Bethe,  1928). We can, however,  
S t anda rd  dynamica l  theories for diffraction phenom- t rea t  the  problem in an  entirely different way  which 
ena in crystals are based on the Laue -Be the  formula- we m a y  call ' lamellar  crystal '  approach.  I t  seems 
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necessary to do this for the purpose of extending 
dynamical theories to elucidate diffraction phenomena 
in distorted crystals. Since the Laue-Bethe theory is 
based on a Bloch wave which is only permissible in 
perfect crystals, in the case of distorted crystals 
it  seems to be almost inapplicable. 

The idea of the lamellar crystal approach was 
originally given by  Darwin (1914a, b) in the simple 
Bragg case. Recently Cowley & Moodie (1957, 1958, 
1959) have presented a more extensive theory along 
this line for the Laue case. A short description of a 
similar theory was also given by Sturkey (1957). 

Since, however, Cowley & Moodie used a Huyghen's  
principle and a couple of ad hoc assumptions, their 
theory appears to be applicable only to cases of small 
scattering angle such as electron diffraction problems. 
In the present paper the author intends to show tha t  
a lamellar crystal theory can be established on a more 
satisfactory base and the above-mentioned assump- 
tions can be avoided. This opens the way for applying 
the present formalism also to X-ray and neutron 
cases.* 

2. Genera l  formula t ion  

(a) Scattering by a crystal slice 
As illustrated in Fig. 1, we divide a bulk crystal 

into parallel-sided slices, their thickness being of a 
few unit cells. First  we consider the scattering process 
in a crystal slice. The front and rear surfaces are 
specified by suffixes a and fl respectively. A wave 
function on the c~-surface is writ ten in terms of its 

I L 

Source 

Plane of observation 

Lo 

Fig. 1. Illustration of dividing a bulk crystal into parallel 
slices and the geometrical relation among a wave source, 
the crystal and a plane of observation. 

* By entirely different approaches, Fujiwara (1959) and 
Fujimoto (1959) also showed that some results of Cowley & 
Moodie were obtained without using their approximations. 

Fourier transform as follows, taking x- and y-axes 
in the ~-surface: 

f~(x, y)=(1 /2z )  IF~(~,  7) exp i ( ~ x + ~ y ) d ~ d ~ . t  (1) 

The axes ~ and ~ are reciprocal to the axes of x and y 
respectively. A similar expression will be given to a 
function f~ and its Fourier transform F~. 

Our first problem is to find a relation between 
F~(~, 7) and FB(~, 7) based on a Born approximation. 
Since the thickness A z of a slice is thin enough, this 
can be justified in usual cases. For simplicity, we 
consider first a scalar wave function f which satisfies 
SchrSdinger's equation 

A f  + (8~2m/h ~) ( E -  v)f--0  (2) 

where h is Planck's constant; E and v are the total  
energy of an incident particle of mass m and the 
potential energy of a crystal respectively. A well- 
known integral form equivalent to equation (2) is 
(see, for example, Mott  & Massey, 1949) 

f (x ,  y, z )= f° (x ,  y, z) ÷ (1/4z) 

× I (exp iKr/r)g(x' ,  y', z ' )dx 'dy 'dz '  (3) 
,) 

where 
r 2 --_ ( x - x ' ) 2 + ( y - y ' ) 2 + ( z - z ' ) 2  

g ---- u(x', y', z ' ) f(x ' ,  y', z') (4) 

K 2 = 8~2mE/h 2 (5) 

u = -(8~2m/hg)v(x ', y', z') . (6) 

Moreover f0 may  express the undisturbed wave which 
coincides with f~(x, y) at the a-surface, namely 

fo (x, y, z)= (1/2~) f F~(~, ~7) exp i ( 4x + ~]y + ~z)44 d~] (7) 

where 42 + 72 + ~2 = K 2. (8) 

Remembering the two-dimensional Fourier integral 
form of a spherical wave 

exp iKr/r  = (i/2~) I 
exp i ~ ( z -  Z I ) 

× e x p i ( 4 ( x - x ' ) + ~ ( y - y ' ) } d d d ~  7 (9) 

we have the following Fourier transform of f~ = 
f (x ,  y , / l z )  from equation (3), in which f in the inte- 
grand is replaced by f0: 

F~(4, 7) = exp i$Az  
× (F~,(4, ~ )+( i /2g ) (K /~ )G(4 ,  7; /Iz)} (10) 

where 

G= (1/2K) g(x', y', z') o dz'  

×exp  - i ( d x ' + ~ y ' ÷  ~z ' )dx 'dy ' .  (11) 

SS I t Hereafter d~d~ is abreviated to d~d~]. 
--CX:) 
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Since the integral with respect to x' and y'  can be 
interpreted as 2g times the two-dimensional Fourier 
transform of g, it follows that  

_f'Az f 
G =  (1/2K) }0 dz' F~,(~', ~') 

× expi$ ' z ' .U(~-~ ' ,  U - U ' ;  z ' )exp - i~z 'd~'d U' (12) 

where 

U(~, ~; z) = (1/2~) fu(x,  y, z) exp - i (~x+uy)dxdy .  
(13) 

In  simple cases where u is quasi-periodic, U may 
be approximated by a perfectly periodic function 
with respect to z within a thin slice. Then U can be 
expanded as 

U(~, U; z) = (2K).~ Q~(~, U; g3)exp 27dg3z (14) 
~a 

where ga is a reciprocal lattice vector of this one- 
dimensional lattice.* 

The suffix aft in Q,~ is used in order to emphasize 
the fact tha t  the Fourier coefficient Q~ depends on 
the individual slice with which we are concerned. 
Under this approximation 

G =  f F , (~ ' ,  V ' ) ~ ( ~ - ~ ' ,  V -  v ' )d~ 'dv  ' (15) 

where 

0~,~ = .~, Q,~( ~--~', ~ -  U', gs) { 1 - e x p -  2iq~Az}/2iq~ 
~ (16) and 

~ = ½ ( ~ -  ~ ' - 2 ~ g s ) .  (17) 

In X-ray cases, Maxwell's equation can be reduced 
to 

A d + K S d + r o t  rot ( z d ) = 0  (18) 

for a displacement vector d and the polarizability Z 
of a crystal (see, for example, v. Laue, 1960). :No 
essential difficulty arises even in vector fields to obtain 
a relation between Fourier transforms D~ and D e of 
wave functions on the a and fl surfaces. Corresponding 
to equation (10) we have 

D~(~, ~) 
=expi~Az{D~,(~, U)+(i/2g)(K/~)G(~, U; Az)} (19) 

where 

V) = I D~:¢,,,¢~(~', V')O~($- $', V- v')d$' 
(20) 

In  equation (20) D[~,n,~] means a component of D 
on the plane perpendicular to a direction [~, ~, ~]. 
The symbol Q~ in (~z is now related to Z by 

= (1/2~)(2/K) f .~, Q~¢(~, ~; ga) g ,) ga 
× exp i(~x+ ~y+2xegsz)d~d~. (21) 

* In general, gs depends on ~ and U- 

Moreover, in deriving equations (19) and (20), the 
direction [2, U, $ '+2~g3] is approximated by [~, U, ~], 
since we are concerned with such cases where the 
Bragg condition is almost satisfied. 

Clearly equations (19) and (20) can be reduced to 
a set of scalar equations such as equations (10) and 
(15) taking into account proper factors of polarization. 
Therefore we consider only scalar waves in the 
following with no violation of generality. 

(b) Scattering by the whole crystal 
In order to extend the above formulation to multi- 

layer cases it is convenient to use a matr ix notation 
in a symbolic sense.* In the following a bold letter F 
stands for a vector in Hilbert  space, its (~, ~7)-com- 
ponent being F(~,  U)" A matrix of infinite rank O ~  
expresses the scattering process in an individual slice. 
Its (~, U; ~', U') elements are 

5 ( ~ - ~ ' ,  U-~')+(i /2~)(K/~)Q~. 

The symbol [exp i (~ lz ) ]  is used for a diagonal matrix 
whose elements are 

exp i($Az). 5 ( ~ -  $', U -U ' )  • 

Using these notations and equation (15), equation (10) 
can be writ ten as t 

F~ = [exp i (~Az~,~)] Q ~ F ~ .  (22) 

The multiplication of Q ~  and F~ implies a two- 
dimensional convolution through common variables of 
columns and rows. Applying this relation to all the 
slices successively we have the following relation 
between Fourier transforms Fe(~, U) and P~(~, ~/) 
which refer to the incident and exit surface respec- 
tively: 

Fa=QeaFe (23) 
where 

Qea=[exp i(~Az~v)]QN...[exp i(~zJZn)]Qn... Q1 (24) 

for a crystal of _N-layer. The suffixes aft is now 
replaced by the number n specifying the order of 
sequence. 

(c) Consideration of incident waves 
The Fourier transform Fe is determined by the 

incident wave concerned. I t  is not difficult to obtain 
F~ for simple cases such as ~ plane w~ve, ~ plane 
wave modified by a slit system and a spherical wave 
(cf. Kato, 1961a). 

For example, in the last ease, using the present 
notation, 

Fe(~, U)=i  exp i~L/~ (25) 

where L is the perpendicular length from a point 
source to the incident surface (see equation (9)). 

* See, for example, Schiff (1949) .  
t Generally the thickness (Az) of slices must be specified 

by aft since their thicknesses may differ from each other. 
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(d) Consideration of outgoing waves 
If a Fourier transform F~ on an exit surface is 

given, we can calculate quantities which are relevant 
to particular experimental conditions. As an example 
we consider here an ordinary diffraction experiment. 
In  this case we need an intensity distribution at  a 
large distance from the exit surface. The wave function 
at  .La from the exit surface is given by 

f(x, y, La) -= (1/2~) f Fa(~, ~]) 

x exp i(~x+ UY+ ~La)d~du" (26) 

If L~ is large enough, an asymptotic form of 
equation (26) can be obtained by  a two-dimensional 
s ta t ionary phase method (for example, Born & Wolf, 
1959). The result is 

f (x,y,L,~)~_(-i~)Fa(~,~l)expiKR/R, (27) 
where 

R = (x 2 + y2 + L~)½ 
and 

~=(x/La)~, ~=(y/La)~. 

In  other words the angular distribution of an out- 
going wave is proportional to the angular spectrum 
of the Fourier transform of the wave function at an 
exit surface. 

3. Two-beam theory of perfect crystals 

(a) Non-absorbing cases 
In  perfect crystals u(x, y, z) is a periodic function 

in the x- and y-directions (lateral) as well as in the 
z-direction (normal). Thus Q ~ ( ~ - ~ ' ,  ~/-~/', gs) is a 
d-type function and can take an appreciable value 
only at  three-dimensional reciprocal lattice points 
{g~, g~, ga}. 

For a lattice point (gl, g2, gs) at  which the Bragg 
condition is satisfied the magnitude of ~t0 must be 
less than  or comparable to 2z  where ~ is defined 
by equation (17) and to= 2:Az~ is the total  thickness 
of the crystal. For thick crystals, therefore, we can 
safely approximate the shape function 

{1 - exp - 2icfAzn}/2icf 

by Az~. For other points {gl, g2, g~}, 2~ is almost 
equal to 2g(ga-g~ ). As stated below we take AZn as 
a small multiple of the lattice periodicity along the 
z-direction in order to keep the phase factor of Qn 
constant. Therefore 2q~Azn is close to an integral 
multiple of 2m Thus we have 

O~n~_ Qn(gl, g2, g3)Azn 

in which (g~, g2, gs) refers to the particular net plane 
on which the Bragg reflection takes place. 

Here we assume tha t  a wave of wave vector {~,U,~} 
excites only one diffracted wave having a wave vector 
{~', ~/', ~'}, where 

~ -  ~'=27~gl, U - U ' = 2 ~ g 2 .  (29) 

The components ~ and ~' are given by equation (8). 
Under this condition and also if the incident wave 

is a plane wave it is sufficient to consider only two 
components F(~ ,  U) and F(~ ' ,  U') of a vector F. 
Also continuous matrices [expi(~dzn)]  and On can 
be reduced to the following two-by-two matrices 
respectively. 

l i$Azn 0 ~ = (exp (30) 
0 exp i~'Azn/ 

(1 +i(K/~)Q~Azn i(K/~)Q~_pAzn 
Qn = \ i(K/~ )Q~Azn l÷i(K/~')Q'dAzn] (31) 

where Q~ and Q~ stand for the 0th and gth Fourier 
coefficients of u(x, y, z) in the nth slice. 

So far we took the origin of the coordinates for each 
slice at  an arbi t rary  point on a line perpendicular to 
the slice. Therefore {Q~} differ by a phase factor from 
each other. If we divide the hulk crystal by parallel 
planes passing through equivalent points on a zone 
axis in the Bragg-reflecting net plane concerned and 
take the origin at  the equivalent point for each slice, 
{Q~} do not depend upon n. 

As a result of changing the origin, however, we 
must change the phase factor of the Fourier transform 
of the wave function at the (n+  1)th surface relative 
to tha t  at  the nth surface by 

dn (expi(~pn+~]qn) 0 ) (32) 
= 0 exp i (~'pn + U'qn) 

where pn and qn are the relative displacements of 
the origin in the x- and y-directions on going from 
the nth to the ( n + l ) t h  slice. Thus we have the 
relation 

Fn+l=(dn~nOn)Fn (33) 

as a special case of equation (22). Obviously, in perfect 
crystals, displacements {pn, q~} and the thickness Az,~ 
can be considered as constant throughout  the crystal. 
Thus we need not specify them by the suffix n. 

In order to make the matr ix product (d~Q) sym- 
metrical we use the following notations: 

(g/~)Qo = Ct, (K/~')Qo = ¢,. (34) 

a = exp ½i(~-¢r)Az (35) 

blp.= (K/~)Q-o exp - ½i(¢t +~r)Az 
b~= (K/~')Qg exp-½i(d?t+d?r)Az. (36) 

In practice we can neglect the term exp -½i(~t  + ~r)A z 
for both of X-rays and electrons since the magnitude 
of A z is reducible to a distance of a few atoms. 

Using these relations, we have 

d~O = exp i~b.R (37) 
where 

q) = (~p+uq+~Az)+½(¢t+¢~)Az-q~Az (38) 
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and 

R = (exp OO9/]z Oiq~zjz)(ibeazjzib~ezJz~ exp a* ]" 

In deriving this we use the relation 

(39) 

glP + geq + gsAz = 0 .  (40) 

Thus our problem is reduced to a mathematical  
problem of calculating a matr ix product R ~. A 
problem of this type appears frequently in various 
fields of physics; for example, four-terminal-circuit- 
theories, multilayer optical films and the Ising model 
of lattice statistics. 

A standard technique for calculating the matr ix 
product is to find the eigenvalue 2~ and the eigen- 
vector X which are defined by 

R =  X(20+  f _ )  X - L  (41) 

In  our particular problem, it turns out that  

X+ ={cos ?D_+i (sin ~ q~D+Be)½}Az 
_~ exp + i(q)~+Be)½Az (42) 

where 
q~D=q)+½(¢t--¢r) (43) 

and 
B e = (K/~)(K/~')QgQ_g. (44) 

Here ~9D is a parameter which indicates the deviation 
from the exact Bragg condition in a dynamical sense. 
The eigenvector matrices are given in the Appendix. 

Thus, writing 
K -- R ~ = X A ~ X  -1 (45) 

we have the matr ix elements of K as 

K n  = ½ ( ~  + B~')-½ {(~D + ( ~  + Be)½) exp i(q~ + Be)½to 
- (~D -- ( ~ + BP) ½ ) exp -- i( ~ + Be)½t0} 

Kle=  ½ble(q~ + Be) -½ {exp i(q~ + Be)½to 
- exp - i ( ~  + Be)½t0} 

K~I = ½bp~(~ + Be)-½ {exp i(7~ + Be)½to 
- e x p -  i ( ~  + Be)½t0} 

Ke~. = ½(q~) + Be) -½ {( - qD + ( ~  + B e)½) exp i ( ~  + B 2) ½to 

+(7~D+(q~+Be)½)exp-i(q~+Be)½to} . (46) 

Here to is the thickness of the crystal, namely NzJz. 
Thus, finally, the t ransmit ted and reflected waves 
(Fourier transforms of wave functions) are given by 

\K~I] " 

Spherical wave cases 
In  X-ray cases we need to consider a spherical 

wave as an incident wave (Kato, 1960, 1961a, b). 
According to the present formulation, wave functions 
at  the exit surface can be given immediately as 

f°l  l I(TRexpi(~x+~Y) ~Fe(~, ~)d~d~] (48) 
ffa] = ~ exp i( ~' x + ~' y)] 

where fo and fa 9 correspond to the t ransmit ted and 
reflected waves on the exit surface respectively and 
Fe(~, ~) is given by equation (25). 

(b) Absorbing crystals 
We can derive a phenomenological theory for 

absorbing crystals assuming v(x, y,z) is complex. 
According to this formal extension we may  predict 
easily ordinary absorption effects as well as the 
Borrmann effect. The former can be described by  the 
imaginary part  of (¢t+¢r)  in equation (38) and the 
lat ter  by the imaginary part  of B e, and of (¢ t -¢ r )  
of ~D in asymmetrical cases. 

4.  D i s c u s s i o n  

(a) Comparison with the theory of Darwin 
In § 3 we treated the two-beam Laue case of a 

perfect crystal as the simplest example of the present 
'lamellar crystal '  theory. In  Darwin's theory (1914a, b) 
a recurrence formula is set up for the Fram~hofer 
amplitudes of t ransmit ted and reflected waves due to 
lamellar slices. His t rea tment  is not obviously under- 
standable because the Fraunhofer amplitude is the 
amplitude of the scattered wave at  infinity whereas 
we are concerned with crystal waves in individual 
slices. 

We saw in § 2(d), however, tha t  Fraunhofer ampli- 
tudes are proportional to F(~, zy) on the rear surface 
of a crystal. The argument can be applied also to the 
Fourier transform of any crystal slice. Thus we can 
see an intimate relation between a recurrence formula 
of Fraunhofer amplitudes and tha t  of Fourier trans- 
forms (equation (33)). The present theory is essentially 
equivalent to tha t  which may  be set up for Laue 
cases based on the same principle as Darwin's theory. 
In  this sense the present theory is an extension of 
Darwin's theory of primary extinction. 

(b) Comparison with the theory of Laue-Bethe 
Since Darwin's results and those of Laue and Bethe 

are essentially the same, it is expected tha t  the 
present theory is equivalent also to the theory of 
Laue and Bethe in the case of perfect crystals. In  fact, 
we can see the perfect agreement between crystal 
wave-functions obtained from both theories (for ex- 
ample, compare equations (46) and (47) with § 2 of 
the previous paper (Kato, 1961)). An advantage of 
the present theory is tha t  it  has a possibility of being 
extended to distorted crystals, which will be shown 
in the next paper. 

(c) Comparison with the theory of Cowley & Moodie 
The basic formulation established here has a similar 

form to that  given by  Cowley & Moodie. This can be 
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seen by  comparing equat ion (24) wi th  equat ion (3-2) 
of their  paper  (1958). The essential  difference lies in 
tha t  in thei r  t r ea tmen t  the convolution is carried out 
in real space ins tead of two-dimensional  Fourier  space. 
In  other words they  used a Huyghens  principle to 
connect wave functions on the front  and  the rear 
surface of a crystal  slice. 

Consequently,  in their  formulat ion,  a quadrat ic  
approximat ion  of an  optical pa th  length was used; 
n a m e l y  

{x 2 + y~ + (Az)2}½ N Az + (x ~ + y2) /2Az.  

Moreover, each slice was t reated as a phase grating. 
Thus the thickness zlz was assumed ext remely  small  
compared wi th  atomic size. Under  these conditions 
the  convolution process of x and  y over + co is ra ther  
difficult  to justify.  I t  seems tha t  their  t r ea tmen t  
is correct only when scattering angles are ext remely  
small.  

In  the present  theory  we avoid the assumptions 
ment ioned  above. The only assumpt ion used here is 
a Born approximat ion  in  a crystal  slice. This is very  
plausible except in special cases of electron diffract ion 
where heavy  atoms are involved (Hoerni & Ibers, 
1953).* Thus i t  is possible to apply  the present  theory 
to X- ray  and neut ron  cases in which scattering angles 
are not  always small.  Moreover, here, a factor (K/~) 
due to obliqueness of waves is properly t reated and  
the theory is applicable also to asymmetr ica l  cases. 

A P P E N D I X  

The eip, envector m a t r i x  of R - m a t r i x  

The defini t ion of eigenvector ma t r ix  is given b y  
equat ion (41). This gives us tha t  

( p ( + ) r ~  p ( - ) r l ~  ) (A1) 
X = p (+) ( ; t+ - r11 )  p ( - ) ( ~ - - r 1 1 )  

* In this case also the present formalism is applicable in 
principle if we use a suitable transform Qa~ in equation 
(15). For example, pseudo-kinematical theory (Hoerni & 
Ibers, 1953; Hayashi, 1960) may be used for a crystal slice. 

X _ I =  (q(+)r21 q(+ ) ( /~+-rn)~ (A2) 
\ q ( -  )rgl q ( -  )(~,--r11)] 

where rij are ma t r ix  elements of R. p ( + )  and  q(_+) 
are normal iza t ion factors. Since only their  product  
is to be fixed, an  a rb i t r a ry  factor can be chosen as 

Thus 
q ( _ + ) = l .  

In( +_ )-- { ( ~ + - r l l ) ( 2 ~ + - r l l - r 2 2 ) }  -1. (A3) 

The author  would like to express his sincere thanks  
to Dr A. R. Lang for his k ind  encouragement  of 
this  work. 
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